

## **CONCEPTUAL DRAINAGE STRATEGY**

## **Thurrock Flexible Generation Plant, Tilbury**

Application document number A7.3 APFP Regulations reference5(2)(q)



| Document status |                     |             |             |             |             |  |  |  |
|-----------------|---------------------|-------------|-------------|-------------|-------------|--|--|--|
| Version         | Purpose of document | Authored by | Reviewed by | Approved by | Review date |  |  |  |
| P01             | For Information     | LJS         | DW          | DW          | 24.10.19    |  |  |  |
| P02             | For Information     | LJS         | DW          | DW          | 16.12.19    |  |  |  |
| P03             | For Information     | CW          | LJS         | DW          | 17.02.20    |  |  |  |
| P04             | For Information     | CW          | DW          | DW          | 16.10.20    |  |  |  |
| P05             | For Information     | CW          | DW          | DW          | 04.11.20    |  |  |  |

| Approval for issue |                 |
|--------------------|-----------------|
| D. Watson          | 4 November 2020 |

#### © Copyright RPS Group Plc. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by RPS Group Plc, any of its subsidiaries, or a related entity (collectively 'RPS'), no other party may use, make use of, or rely on the contents of this report. The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by RPS for any use of this report, other than the purpose for which it was prepared. The report does not account for any changes relating to the subject matter of the report, or any legislative or regulatory changes that have occurred since the report was produced and that may affect the report. RPS does not accept any responsibility or liability for loss whatsoever to any third party caused by, related to or arising out of any use or reliance on the report.

RPS accepts no responsibility for any documents or information supplied to RPS by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made. RPS has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy. No part of this report may be copied or reproduced, by any means, without the prior written consent of RPS.

Prepared by: Prepared for:

## RPS Group Statera Energy Limited

Louis Sime Engineer

Sherwood House Sherwood Avenue Newark Nottinghamshire NG24 1QQ

T +44 1636 605 700

E louis.sime@rpsgroup.com

145 Kensington Church St Kensington London W8 7LP

T 020 7186 0580

E contact@stateraenergy.co.uk

## **Contents**

| 1    | INTRODUCTION                                                             |    |
|------|--------------------------------------------------------------------------|----|
|      | Site Description                                                         |    |
|      | Ground Conditions                                                        |    |
| 2    | PROPOSED SURFACE WATER DRAINAGE                                          |    |
|      | Surface Water QuantitySurface Water QualitySuDS Biodiversity and Amenity | 6  |
|      | •                                                                        |    |
| 3    | SURFACE WATER DESIGN PARAMETERS                                          |    |
|      | Design Parameters Storm Return Periods and Durations                     |    |
| 4    | PROPOSED FOUL WATER DRAINAGE                                             | 11 |
| 5    | CONSTRUCTION STAGE DRAINAGE                                              | 12 |
| 6    | MAINTENANCE                                                              | 13 |
|      |                                                                          |    |
| Tab  | oles                                                                     |    |
| Tab  | ole 1: Conceptual Design Levels                                          | 5  |
|      | ole 2: Medium Hazard - Pollution Mitigation                              |    |
| Tab  | ole 3: Typical Maintenance Activities                                    | 13 |
|      |                                                                          |    |
| _    | ures                                                                     |    |
| Figu | ure 2-1 Attenuation Basin with low flow channel                          | 9  |

## **Appendices**

Appendix A – RPS Drawings Appendix B – RPS Calculations

## 1 INTRODUCTION

- 1.1 RPS has been commissioned by Statera Energy to produce a Conceptual Drainage Strategy in support of a Development Consent Order (DCO) application for a proposed Flexible Generation Plant (FGP) in Thurrock Essex.
- 1.2 The proposed development site, approximately 20ha in size, comprises a new gas fired power and battery storage facility together with gas connection compound and other associated plant infrastructure:
  - Gas engines, air pollutant control and cooling
  - Gas connection compound
  - Substation
  - Battery Storage
  - Carbon capture Ready Area
  - Access Track and Soft Landscaping
- 1.3 The site will be fully secured against access by the general public and will in general not be manned.
- 1.4 The purpose of the Conceptual Drainage Strategy is to outline the design principles for surface water drainage to be adopted for the development of the site. This report has been produced in conjunction with an RPS Flood Risk Assessment contained within Volume 6, Appendix 15.1: Flood Risk Assessment of the Environmental Statement (application document A6).
- 1.5 The contents of this report are to be read in conjunction with all supporting drawings and/or documents referenced herein, appended to this report or submitted in support of the DCO application for this development.

## **Site Description**

- 1.6 The site is located in Thurrock, Essex and consists of approximately 20ha agricultural land, which is split into two distinct fields, north and south, by a land drainage ditch, see RPS drawing 019512-RPS-SI-XX-DR-D-0300.
- 1.7 The Site is bound by agricultural land to the east and west, with an existing National Grid substation on the southern boundary. The River Thames is situated approximately 1km south of the Existing substation. Vehicular access to the site is via an existing access track to the north east which connects to Station Road.
- 1.8 More information regarding the site location and description can been found in Volume 2: Project description of the Environmental Statement (application document A6).
- 1.9 A topographical survey carried out by Survey Solutions dated 28/02/2018, confirmed an average site level of approximately 1.5m AOD. The survey indicates the north field to have a gentle slope from the northwest to the southwest, c.1.4m AOD to c.1.23m AOD and the south field to fall from west to east. c.1.55m AOD to c.1.3mAOD. Some localised raised areas up to 1.8mAOD are also identified in the survey.

019512-RPS-XX-XX-RP-D-0300 | Conceptual Drainage Strategy | P05 | 04th November 2020

rpsgroup.com

Page 1

1.10 The site and its immediate surroundings are farmland, therefore surface water drainage provisions which currently exist are limited to local field drains / open ditches and/or minor watercourses laid to the perimeter of existing fields.

## **Ground Conditions**

- 1.11 A Phase 2 site investigation was carried out by TerraConsult Ltd to provide information on the condition of the site prior to application for an Environmental Permit. This report contained a summary of the following encountered ground conditions:
  - Topsoil
  - Made Ground
  - Alluvium
  - Lewes Nodular Chalk Formation, Seaford Chalk Formation and Newhaven Chalk Formation

More information regarding the location and depths of the encountered ground conditions can be found in the TerraConsult Ltd. Phase 2 Site Investigation Report, Report No 4593/R01 Issue 1.

## 2 PROPOSED SURFACE WATER DRAINAGE

- 2.1 The proposed new surface water drainage system will be designed using current MicroDrainage Design software by Innovyze, to take account of planning guidance, Lead Local Flood Authorities (LLFA) and Environment Agency (EA) guidance to prevent uncontrolled flooding of the site and surrounding areas.
- 2.2 Due to the nature of the DCO application, the final site layout will be determined within the limits of deviation. At this stage, the drainage strategy for the site has been carefully devised achieve a strategy which adequately manages water quality, water quantity and promotes biodiversity whilst accommodating design flexibility that the DCO and limits of deviation allow. This strategy will be refined at detailed design stage.

In the absence of a finalised site plan, proposals to manage water quality, water quantity and promote biodiversity have been developed conceptually at this stage using an indicative areas plan. The Indicative Drainage Areas plan has been included in Appendix A.

2.3 Surface water runoff from the proposed development areas will be managed as follows:

#### Permeable surfaces

- Landscaping any grassed landscaped areas will drain directly to one
  of the onsite attenuation basins or any of the series of ditches on the
  site.
- Unbound site access roads access roads will be constructed of unbound materials and will therefore generate similar runoff volumes to the naturally occurring clay subgrade. Runoff from these areas will drain as existing to either the attenuation basins, ditches or filter drains.

### Semi-permeable surfaces

- Gravelled compound areas Runoff will percolate into the gravel which will be laid to falls to a network of filter drains. A perforated pipe will then carry generated flows to the attenuation basin. The exact arrangement of smaller plant and battery units in these areas is currently unknown. This area has been conservatively assumed to be 50% impermeable surfacing.
- Carbon capture The areas allocated for carbon capture have been bound by a series of land drainage ditches to intercept overland flows. These ditches will then convey runoff towards the attenuation basins. The exact makeup of these areas is currently unknown and therefore this area has been conservatively assumed to be 50% impermeable surfacing.

Page 3

rpsgroup.com

Page 4

- Impermeable surfaces
  - Plant areas It is envisaged that gas reciprocating engines will be located on concrete slabs. The slabs will be laid to crossfalls which direct surface water to a channel/ slot drain. After passing through a proprietary interceptor, surface water will then be directed towards the attenuation basins. Penstocks will also be provided at these locations to allow for containment of spillages.
- 2.4 The areas mentioned above have been set out in an Indicative Areas plan included in Appendix A. Based on this plan, a total impermeable area of 63,500m² has been estimated which equates to approximately 32% of the total site area. These figures have been using to calculated site specific runoff coefficients (Cv) of 0.729 Summer and 0.851 Winter for use in the drainage design. Calculations included in Appendix B.

Page 5

2.5 For conceptual design purposes the following levels have been assumed;

**Table 1: Conceptual Design Levels** 

| Conceptual Design levels                                                               |                               |
|----------------------------------------------------------------------------------------|-------------------------------|
| Existing site levels                                                                   | Average approximately 1.5mAOD |
| Attenuation Basin cover level                                                          | 1.75mAOD                      |
| Attenuation Basin invert level                                                         | 0.75mAOD                      |
| Outfall to perimeter ditch level                                                       | 0.5mAOD                       |
| Zone A areas including the gas fired facility, battery storage and customer substation | 2.0mAOD                       |

Levels to be reviewed during detailed design

2.6 The proposed level for the gravel compounds and plant areas is set c.500mm below the design flood level for the development. Flood resistant / resilient measures will therefore be incorporated to protect the proposed infrastructure up to this level. Measures may include flood resilient construction and localised bunding. Further details on flood risk and resilience is included in the RPS Flood Risk Assessment contained within Volume 6, Appendix 15.1: Flood Risk Assessment of the Environmental Statement.

## **Surface Water Quantity**

- 2.7 Greenfield runoff rates for the site have been calculated for the site using IH124 Methodology within MicroDrainage software and have been included in Appendix B. A SOIL WRAP Class 4 has been selected for the assessment of greenfield runoff rates on the basis of the Terraconsult Phase 2 Site Investigation report 4593/R01. This identifies an average topsoil depth of 386mm where present on site. In all instances the topsoil layer was directly underlain by impermeable Alluvial Clay. In a small number of locations, no topsoil was recorded, instead a surface layer of made ground comprising impermeable Alluvial Clay soil was present. Based on a depth of topsoil less than 40cm with a generally flat, but undulating topography, a Class 2 Water Regime is appropriate. The depth to impermeable horizon is less than 40cm, with a Slope Class less than 2 degrees and Medium Permeability Class being applicable to the vegetated surface layer dictates a WRAP SOIL Class 4 category.
- 2.8 Surface water discharge from the site will be controlled to the equivalent greenfield 1 in 1 year event for all return periods up to and including the critical 1 in 100 year +40%cc event through the use of a flow control device. The site 1 in 1 year greenfield rate has been calculated as 56.4l/s.
- 2.9 Surface water runoff will be collected as per the methods above and discharged into one of the two on-site surface water attenuation basins, designed in accordance with The SuDS Manual, CIRIA Report C753, 2015. The attenuation basins will provide attenuation of flows and assist with removal of sediments from rainwater runoff. The downstream outlet of the attenuation basin will include a sump / catch pit for removal of silt and debris. Each attenuation basin will provide

rpsgroup.com

- adequate storage for all storm events up to and including the 1:100 year return period with an additional 40% for future climate change.
- 2.10 As per the Indicative areas plan, a proportion of the landscaping areas will drain as per existing arrangements to the perimeter ditches. The runoff from the remainder of the site has been divided between two sub-catchments 1 and 2 which drain to attenuation basins 1 and 2, see RPS drawing 019512-RPS-SI-XX-DR-D-0300. The 56.4l/s discharge rate will therefore be divided proportionally between the attenuation basins to two separate outfalls. The proposed discharge rates from Attenuation basins 1 and 2 are 41.7l/s and 14.7l/s respectively.
- 2.11 Initial attenuation volume estimates indicated that volumes in the region of 20,100m³ would be required to achieve adequate storage to restricted to the greenfield runoff rates. This figure has also been dived proportionally between the two site catchments so that Attenuation basin 1 and Attenuation basin 2 each provide approximately 17,000m³ and 4,500m³ attenuation volume respectively.
- 2.12 Preliminary calculations have been undertaken using MicroDrainage Software and included as Appendix B. These calculations demonstrate that both Attenuation basins 1 and 2 have adequate capacity to attenuate flows from all storms up to and including the 1 in 100 year storm including a 40% allowance for climate change.
- 2.13 The outfalls to the perimeter drainage ditches will be fitted with non-return valves to prevent the ingress of water should the water level in the ditch rise. Due to the distance from the Thames it is not considered likely that the outfall would be submerged for long periods due to tidal influences. In the event that an excessively high tide prevents an outfall from the site for a prolonged period, the site will be allowed to flood as it would in its undeveloped state. Any flooding which occurs due to a submerged outfall is not likely to cause significant disruption as this will be lower than the 2.5mAoD flood resilience level determined by the FRA for the Tidal breach scenario.
- 2.14 The proposed surface water drainage layout is shown on RPS drawing 019512-RPS-SI-XX-DR-D-0300 Indicative Drainage Layout, which is included in Appendix A.

## **Surface Water Quality**

- 2.15 Proposed run-off quality control for the Thurrock FGP Site will include a combination of proprietary pollution interceptors, filter drains, open channels and attenuation basins arranged in a format relative to the pollution hazard level of the different site areas. A general arrangement of these elements has been included as RPS drawing 019512-RPS-SI-XX-DR-D-0300. The exact location and combination of features will be determined in the final Drainage Strategy during detailed design, prior to construction.
- 2.16 A water quality risk assessment has been carried out using the SuDS hazard mitigation indices in accordance with Chapter 26, of The SuDS Manual, CIRIA Report C753, 2015. Under this method of assessment, the worst case area of the development is considered to be the concrete slab, plant areas. Considering the low expected traffic volumes and appropriate containment of any hazardous

rpsgroup.com

substances, the residual pollution hazard level is considered to be medium hazard levels similar to that of a commercial yard.

2.17 A combination of proprietary interceptor units, filter drains and attenuation basins will be the minimum level of water quality control provided to the plant slab areas. The following table demonstrates that the SuDS Mitigation indices provided by the features exceed that of the associated pollution hazard index.

Table 2: Medium Hazard - Pollution Mitigation

|                                                                             | Hazard Level | Total Suspended<br>Solids (TSS) | Metals | Hydro-carbons |
|-----------------------------------------------------------------------------|--------------|---------------------------------|--------|---------------|
| Pollution<br>Hazard<br>Indices                                              | Medium       | 0.8                             | 0.8    | 0.9           |
| Proposed<br>SuDS<br>mitigation I <sub>1</sub><br>Bypass<br>interceptor unit | -            | 0.6                             | 0.5    | 0.6           |
| Proposed<br>SuDS<br>mitigation I <sub>2</sub><br>Filter Drain               |              | 0.4                             | 0.4    | 0.5           |
| Proposed<br>SuDS<br>mitigation I <sub>3</sub><br>Attenuation<br>basin       |              | 0.5                             | 0.5    | 0.5           |
| Total SuDS<br>Mitigation<br>(I <sub>1</sub> +0.5xI <sub>2</sub> )           |              | 1.05                            | 0.95   | 1.1           |

2.18 Any areas at risk of spillages or proposed for storage of hazardous chemicals will be subject to specific appropriate containment measures, regulated though the environmental permit. These additional containment measures will ensure there is no risk of pollution to the surface water drainage system.

## **SuDS Biodiversity and Amenity**

- 2.19 The proposed site layout will require infilling of existing land drainage ditches, see RPS drawing 019512-RPS-SI-XX-DR-D-0300. This has been recognised as a potential loss of habitat in an area known to accommodate protected species such as water voles. Working closely with the ecology team, SuDS techniques have been incorporated into the proposed drainage strategy to harness the multiple benefits of SuDS including habitat compensation.
- 2.20 The proposed drainage strategy includes several open ditches to replace those lost through the development proposals. These ditches will be designed with integral weir boards to help retain flows and provide a permanent wetted bench for habitat enhancement. Ditches will be constructed with side slopes as steep as ground conditions will allow, preferably 1:1 slopes with a minimum 2m vegetated strip to provide optimum habitat for native species.
- 2.21 In addition to the new ditches, the attenuation basins will look provide a continuation of this permanent wetted bench. After vegetation begins to establish, the proposed attenuation basins will resemble Figure 2-1 below. The area above the permanent water level will be utilised as surface water attenuation and will therefore be encouraged to flood during high rainfall events. The reciprocal effect of this will encourage the formation of a marsh like environment similar to that of the surrounding area under tidal influence.
- 2.22 Proposed ditches and attenuation Basins have, where possible, been linked to perimeter ditches through parallel sections to provide a continuation of habitat throughout the site.



Figure 2-1 Detention Basin with low flow channel

## 3 SURFACE WATER DESIGN PARAMETERS

- 3.1 The new surface water drainage system will be designed using current analysis software, MicroDrainage, ensuring planning guidelines are satisfied to prevent uncontrolled flooding of the Thurrock FGP Site and surrounding areas.
- 3.2 At this stage, preliminary calculations have demonstrated the proposed attenuation basins to provide adequate storage to contain all runoff from the 1 in 100 year rainfall event including 40% allowance for climate change.
- 3.3 During detailed design, the network of ditches, filter drains and piped network shown indicatively in drawing 019512-RPS-SI-XX-DR-D-0300 will be designed to the parameters, return periods and storm durations included below.
- The drainage network will ensure that no flooding occurs in any area of the site for events up to the 1 in 30 year return period storms. For storms in excess of 1 in 30 year events, controlled temporary overland flooding is permitted with flood depths restricted accordingly to consider Health & Safety using Environment Agency's R&D Technical Report FD2320/TR2, Table 13.1 "Danger to people for different combinations of depth and velocity". Any overland flow will be routed to the onsite attenuation basins. No flooding detrimental to buildings will occur during any storm event as a result of surface water runoff.

## **Design Parameters**

- Rainfall: FEH Data; FEH CD-R version 3 Grid Ref E 566350, N 176250.
- Design Return Period: 2, 30 and 100 (+40% climate change) years.
- Climate change: rainfall profiles increased by 40% for 100 year return period
- Volumetric Runoff coefficient: 0.729 Summer, 0.851 Winter
- Global time of entry: 60mins for filter drain and gravel areas, 10 mins for plant slab
- Infiltration: Ignore for peak flow design
- Backdrops: Allow in design; maximum depth of 1.5m
- Velocity: 0.75 m/s for self-cleansing (private drainage)

## **Storm Return Periods and Durations**

- 2 year return period 15mins to 1440mins storm duration
- 30 year return period 15mins to 1440mins storm duration
- 100 year return period (+40% climate change) 15mins to 1440mins storm duration

rpsgroup.com Page 10

## 4 PROPOSED FOUL WATER DRAINAGE

4.1 The proposed Thurrock FGP will be operated remotely however it is envisaged that staff welfare facilities will be provided. The proposed development will not have a sewer connection. Foul drainage from staff welfare facilities on site will be either to a packaged biological foul treatment plant with discharge to the surface water system or to a storage tank for off-site disposal via road tanker. Any provisions for managing foul flows locally within the site will be designed and specified in accordance with BS EN 12566.

rpsgroup.com Page 11

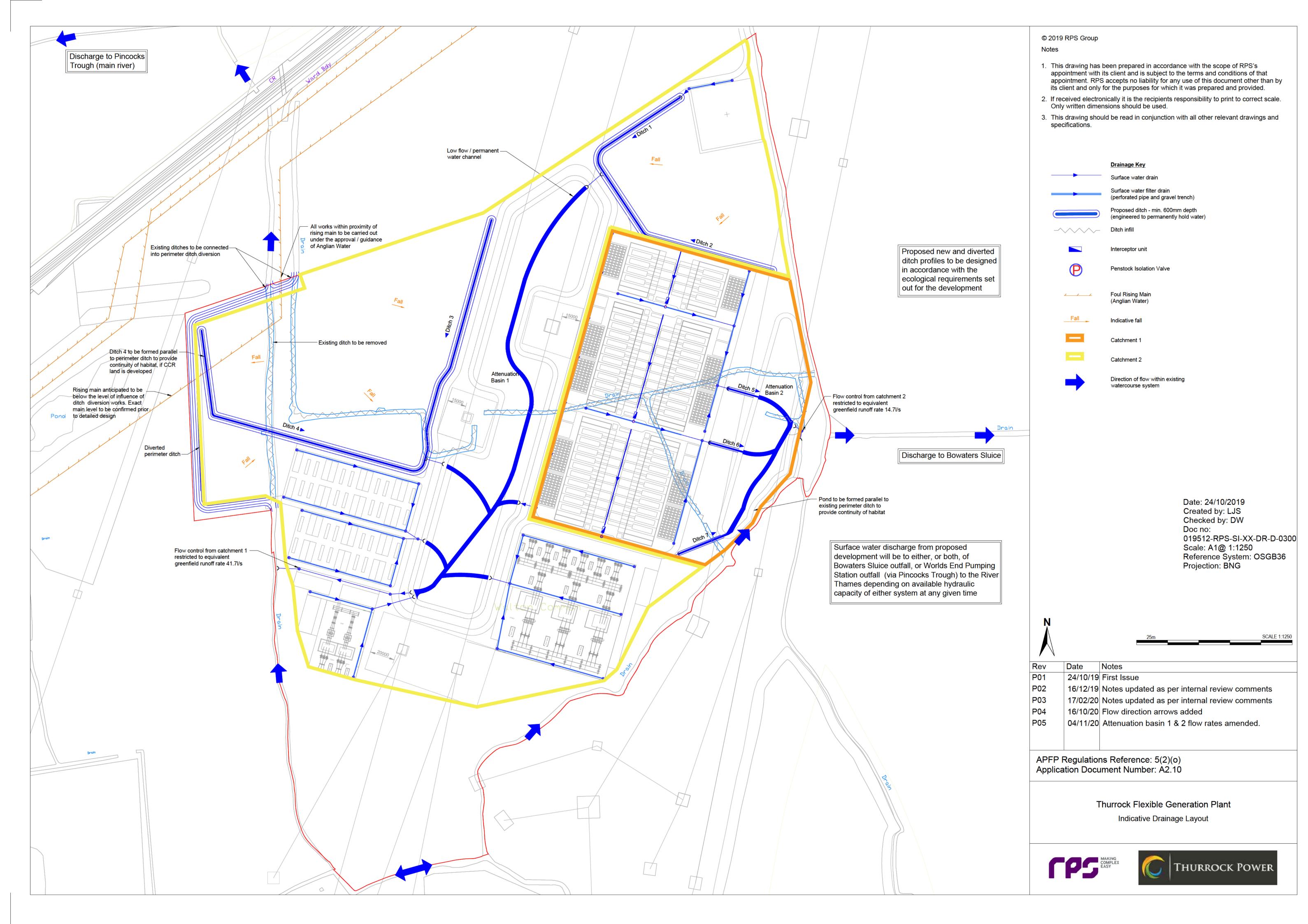
## 5 CONSTRUCTION STAGE DRAINAGE

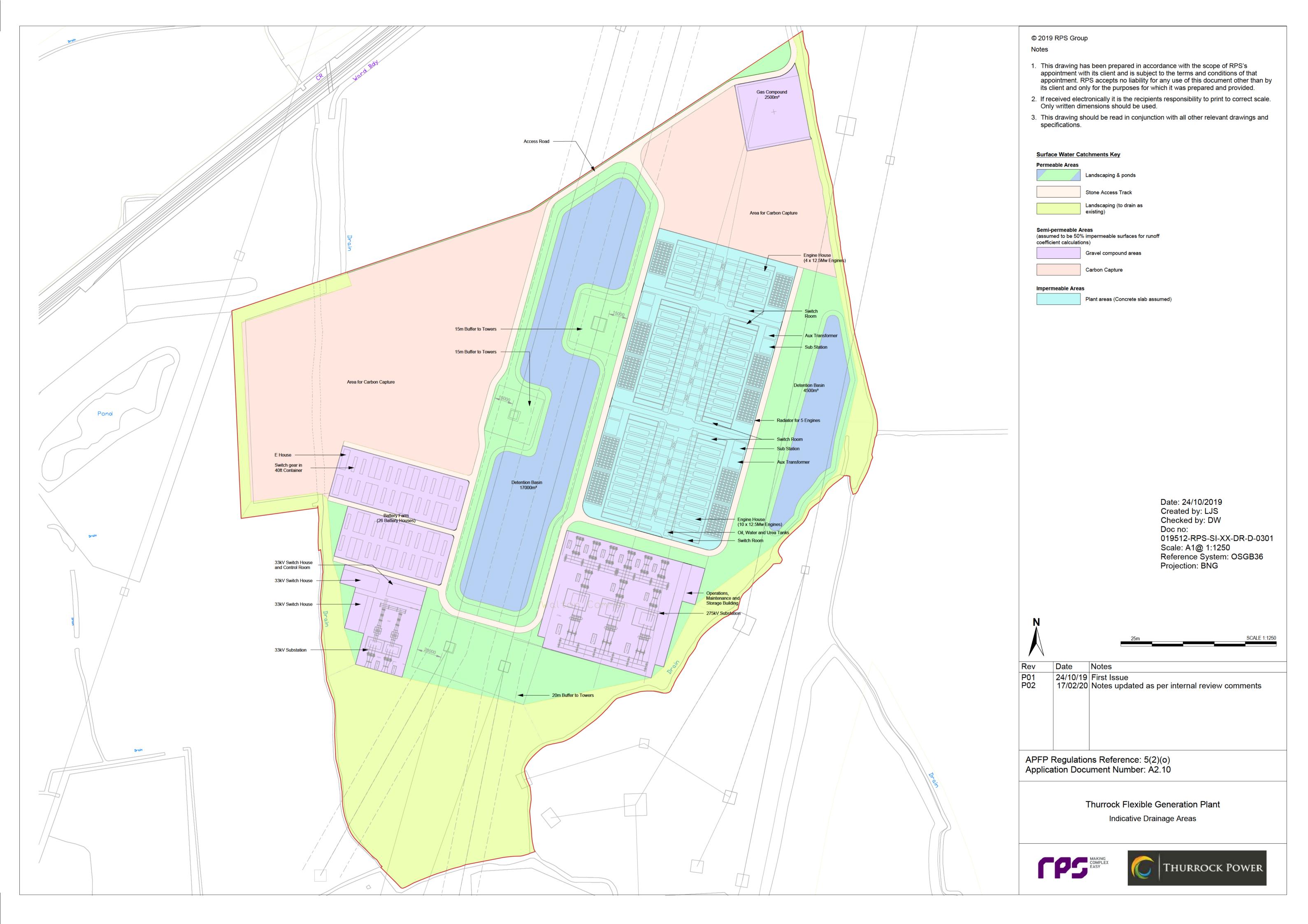
- 5.1 During construction of the development, the building contractor will be responsible for management and disposal of rainwater runoff generated from the site in its temporary condition.
- The contractor will implement methods to manage drainage during construction in accordance with the Code of Construction Practice (application document A8.6). These methods will address pollution management and control in relation to site plant and vehicles, raw materials storage and waste generation, to ensure that all surface water runoff generated in the temporary condition will be free of contamination.
- 5.3 The site will be subject to topsoil strip and bulk earthworks to prepare the site to the correct level for development. The contractor will provide temporary drainage measures as illustrated within Section 6 of Ciria C532 'Control of Pollution from Construction Sites', to contain runoff within the development site boundary, ensuring that these measures are sized appropriately, and that means to remove excess surface water are available for use at all times.

019512-RPS-XX-XX-RP-D-0300 | Conceptual Drainage Strategy | P05 | 04th November 2020

rpsgroup.com

Page 12


## 6 MAINTENANCE

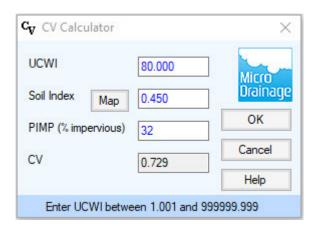

6.1 The maintenance for all plot specific drainage infrastructure will be the responsibility of the owner of the proposed development. Details of the maintenance activities for the constructed drainage infrastructure will be passed to the end user as part of an Operation and Maintenance Manual post completion. Typical maintenance activities may include;

**Table 3: Typical Maintenance Activities** 

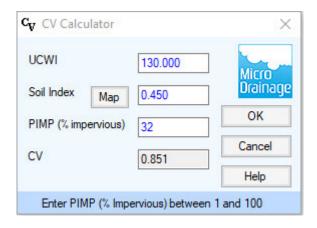
| Element                                       | Access Method                                                                      | Method of Maintenance                                                                                                                                    | Frequency Required                                                                                                                          |
|-----------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Roof Gutters                                  | Scaffolding / Cherry pickers to be used where required.                            | General cleaning of gutters. Jet cleaning where required.                                                                                                | Periodic inspection of gutters to ensure rainwater outlets do not become blocked. Periodic renewal of gutter coatings to prevent corrosion. |
| Oil / Petrol<br>Separators                    | In accordance with H&S regulations and confined spaces requirements.               | Refer to manufacturer's guidance.                                                                                                                        | Bi-annual inspection and emptying.                                                                                                          |
| Slot Drains / Kerb<br>Drainage                | In accordance with H&S regulations.                                                | Monitor to ensure no blockages develop. Jet cleaning where required.                                                                                     | Bi-annual jet cleaning of channel drains.                                                                                                   |
| Silt-traps and Gullies                        | In accordance with H&S regulations.                                                | Monitor to ensure no blockages develop.                                                                                                                  | Bi-annual inspection and emptying of all silt traps and gullies.                                                                            |
| Penstock Valves/<br>Non-Return Flap<br>Valves | In accordance with health and safety regulations and confined spaces requirements. | Monitored to ensure no blockages develop in accordance with the manufacturers recommendations.                                                           | Bi-annual inspection or in accordance with the manufacturers recommendations, whichever occurs sooner.                                      |
| Surface Water Ponds<br>and Swales             | In accordance with H&S regulations                                                 | General cleaning and monitoring<br>to ensure no blockage. Remove<br>litter and debris. Cut grass and<br>manage vegetation. Inspect inlets<br>and outlets | and removal of silt and/or debris                                                                                                           |
| Pumps                                         | In accordance with health and safety regulations and confined spaces requirements. | Monitored via visual and audible alarms in development gatehouse to ensure no blockages develop in accordance with the manufacturer's recommendations.   |                                                                                                                                             |
| Headwall                                      | In accordance with health and safety regulations.                                  | Monitored to ensure no blockages develop.                                                                                                                | Bi-annual inspection and clearance of any debris                                                                                            |

# **Appendix A – RPS Drawings**






## **Appendix B – RPS Calculations**


rpsgroup.com Page 15

## **B.1** Runoff Coefficient Calculations

## Summer CV Calculation



## Winter CV Calculation



rpsgroup.com Page 16

## **B.2** Greenfield Runoff Rate Calculation

| RPS Group Plc                 | Page 1                 |           |
|-------------------------------|------------------------|-----------|
| Technology Services           |                        |           |
| Sherwood House, Sherwood Ave. |                        |           |
| Newark, Nottinghamshire, NG   |                        | Micro     |
| Date 18/10/2019 12:36         | Designed by louis.sime | Drainage  |
| File                          | Checked by             | Dialilage |
| Innovyze                      | Source Control 2019.1  |           |

#### ICP SUDS Mean Annual Flood

#### Input

Return Period (years) 1 Soil 0.450
Area (ha) 20.010 Urban 0.000
SAAR (mm) 550 Region Number Region 6

#### Results 1/s

QBAR Rural 66.3 QBAR Urban 66.3

Q1 year 56.4

Q1 year 56.4 Q30 years 150.2 Q100 years 211.5

## **B.3** Attenuation Basin Calculations

rpsgroup.com Page 18

| RPS Group Plc                 |                        | Page 1     |
|-------------------------------|------------------------|------------|
| Technology Services           |                        |            |
| Sherwood House, Sherwood Ave. |                        |            |
| Newark, Nottinghamshire, NG   |                        | Micro      |
| Date 24/10/2019 15:56         | Designed by louis.sime | Drainage   |
| File DETENTION BASIN 1.SRCX   | Checked by D. Watson   | Diali lage |
| Innovyze                      | Source Control 2019.1  |            |

## Summary of Results for 100 year Return Period (+40%)

| Storm<br>Event |        | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Control<br>(1/s) | Max<br>Volume<br>(m³) | Status  |     |
|----------------|--------|---------------------|---------------------|-------------------------|-----------------------|---------|-----|
| 15             | min    | Summer              | 1.079               | 0.329                   | 41.2                  | 5819.5  | O K |
| 30             | min    | Summer              | 1.111               | 0.361                   | 41.5                  | 6401.1  | O K |
| 60             | min    | Summer              | 1.145               | 0.395                   | 41.6                  | 7023.6  | O K |
| 120            | min    | Summer              | 1.180               | 0.430                   | 41.7                  | 7672.1  | O K |
| 180            | min    | Summer              | 1.200               | 0.450                   | 41.7                  | 8049.1  | O K |
| 240            | min    | Summer              | 1.214               | 0.464                   | 41.7                  | 8306.5  | O K |
| 360            | min    | Summer              | 1.231               | 0.481                   | 41.7                  | 8640.5  | O K |
| 480            | min    | Summer              | 1.242               | 0.492                   | 41.7                  | 8842.4  | O K |
| 600            | min    | Summer              | 1.249               | 0.499                   | 41.7                  | 8968.8  | O K |
| 720            | min    | Summer              | 1.253               | 0.503                   | 41.7                  | 9045.4  | O K |
| 960            | min    | Summer              | 1.280               | 0.530                   | 41.7                  | 9566.5  | O K |
| 1440           | min    | Summer              | 1.314               | 0.564                   | 41.7                  | 10205.5 | O K |
| 2160           | min    | Summer              | 1.338               | 0.588                   | 41.7                  | 10668.8 | O K |
| 2880           | min    | Summer              | 1.353               | 0.603                   | 41.7                  | 10946.4 | O K |
| 4320           | min    | Summer              | 1.316               | 0.566                   | 41.7                  | 10242.4 | O K |
| 5760           | $\min$ | Summer              | 1.282               | 0.532                   | 41.7                  | 9588.2  | O K |
| 7200           | min    | Summer              | 1.249               | 0.499                   | 41.7                  | 8968.0  | O K |
| 8640           | min    | Summer              | 1.218               | 0.468                   | 41.7                  | 8380.6  | O K |
| 10080          | $\min$ | Summer              | 1.189               | 0.439                   | 41.7                  | 7836.2  | O K |
| 15             | min    | Winter              | 1.132               | 0.382                   | 41.6                  | 6796.5  | O K |
| 30             | $\min$ | Winter              | 1.169               | 0.419                   | 41.7                  | 7479.4  | O K |

| Storm<br>Event |     | Rain<br>(mm/hr) | Flooded<br>Volume<br>(m³) | Discharge<br>Volume<br>(m³) | Time-Peak<br>(mins) |      |
|----------------|-----|-----------------|---------------------------|-----------------------------|---------------------|------|
| 15             | min | Summer          | 263.696                   | 0.0                         | 2906.0              | 27   |
| 30             | min | Summer          | 145.425                   | 0.0                         | 3153.8              | 42   |
| 60             | min | Summer          | 80.200                    | 0.0                         | 5057.5              | 72   |
| 120            | min | Summer          | 44.229                    | 0.0                         | 5539.9              | 130  |
| 180            | min | Summer          | 31.226                    | 0.0                         | 5807.1              | 190  |
| 240            | min | Summer          | 24.392                    | 0.0                         | 5980.4              | 250  |
| 360            | min | Summer          | 17.221                    | 0.0                         | 6182.2              | 368  |
| 480            | min | Summer          | 13.452                    | 0.0                         | 6275.8              | 488  |
| 600            | min | Summer          | 11.106                    | 0.0                         | 6304.3              | 606  |
| 720            | min | Summer          | 9.497                     | 0.0                         | 6287.3              | 726  |
| 960            | min | Summer          | 7.754                     | 0.0                         | 6197.4              | 964  |
| 1440           | min | Summer          | 5.827                     | 0.0                         | 5781.3              | 1442 |
| 2160           | min | Summer          | 4.379                     | 0.0                         | 11347.6             | 1928 |
| 2880           | min | Summer          | 3.576                     | 0.0                         | 11514.2             | 2304 |
| 4320           | min | Summer          | 2.499                     | 0.0                         | 10444.6             | 3028 |
| 5760           | min | Summer          | 1.938                     | 0.0                         | 15508.3             | 3808 |
| 7200           | min | Summer          | 1.591                     | 0.0                         | 15788.1             | 4616 |
| 8640           | min | Summer          | 1.355                     | 0.0                         | 15940.5             | 5368 |
| 10080          | min | Summer          | 1.182                     | 0.0                         | 15902.7             | 6160 |
| 15             | min | Winter          | 263.696                   | 0.0                         | 3296.1              | 27   |
| 30             | min | Winter          | 145.425                   | 0.0                         | 3453.7              | 41   |

©1982-2019 Innovyze

| RPS Group Plc                 |                        | Page 2     |
|-------------------------------|------------------------|------------|
| Technology Services           |                        |            |
| Sherwood House, Sherwood Ave. |                        |            |
| Newark, Nottinghamshire, NG   |                        | Micro      |
| Date 24/10/2019 15:56         | Designed by louis.sime | Drainage   |
| File DETENTION BASIN 1.SRCX   | Checked by D. Watson   | Diali lage |
| Innovyze                      | Source Control 2019.1  |            |

## Summary of Results for 100 year Return Period (+40%)

|       | Stor<br>Even |        | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Control<br>(1/s) | Max<br>Volume<br>(m³) | Status |
|-------|--------------|--------|---------------------|---------------------|-------------------------|-----------------------|--------|
| 60    | min          | Winter | 1.209               | 0.459               | 41.7                    | 8211.7                | ОК     |
| 120   | min          | Winter | 1.249               | 0.499               | 41.7                    | 8979.2                | O K    |
| 180   | min          | Winter | 1.273               | 0.523               | 41.7                    | 9430.2                | O K    |
| 240   | $\min$       | Winter | 1.290               | 0.540               | 41.7                    | 9742.2                | O K    |
| 360   | min          | Winter | 1.311               | 0.561               | 41.7                    | 10154.4               | O K    |
| 480   | $\min$       | Winter | 1.325               | 0.575               | 41.7                    | 10413.2               | O K    |
| 600   | min          | Winter | 1.334               | 0.584               | 41.7                    | 10583.9               | O K    |
| 720   | $\min$       | Winter | 1.340               | 0.590               | 41.7                    | 10697.0               | O K    |
| 960   | min          | Winter | 1.374               | 0.624               | 41.7                    | 11357.8               | O K    |
| 1440  | $\min$       | Winter | 1.418               | 0.668               | 41.7                    | 12220.6               | O K    |
| 2160  | min          | Winter | 1.454               | 0.704               | 41.7                    | 12912.4               | O K    |
| 2880  | min          | Winter | 1.470               | 0.720               | 41.7                    | 13222.5               | O K    |
| 4320  | min          | Winter | 1.414               | 0.664               | 41.7                    | 12142.0               | O K    |
| 5760  | min          | Winter | 1.365               | 0.615               | 41.7                    | 11181.0               | O K    |
| 7200  | $\min$       | Winter | 1.316               | 0.566               | 41.7                    | 10239.5               | O K    |
| 8640  | min          | Winter | 1.269               | 0.519               | 41.7                    | 9343.4                | O K    |
| 10080 | min          | Winter | 1.224               | 0.474               | 41.7                    | 8506.3                | O K    |

| Storm |            | Rain    | Flooded | Discharge | Time-Peak |
|-------|------------|---------|---------|-----------|-----------|
|       | Event      | (mm/hr) | Volume  | Volume    | (mins)    |
|       |            |         | (m³)    | (m³)      |           |
|       |            | 00 000  | 0.0     | E055 7    | 7.0       |
|       | min Winter |         | 0.0     | 5855.7    | 70        |
|       | min Winter | 44.229  | 0.0     | 6310.3    | 128       |
| 180   | min Winter | 31.226  | 0.0     | 6526.5    | 188       |
| 240   | min Winter | 24.392  | 0.0     | 6639.2    | 246       |
| 360   | min Winter | 17.221  | 0.0     | 6708.2    | 362       |
| 480   | min Winter | 13.452  | 0.0     | 6668.3    | 480       |
| 600   | min Winter | 11.106  | 0.0     | 6576.8    | 596       |
| 720   | min Winter | 9.497   | 0.0     | 6477.1    | 714       |
| 960   | min Winter | 7.754   | 0.0     | 6267.3    | 944       |
| 1440  | min Winter | 5.827   | 0.0     | 5830.6    | 1404      |
| 2160  | min Winter | 4.379   | 0.0     | 12286.6   | 2076      |
| 2880  | min Winter | 3.576   | 0.0     | 11777.5   | 2716      |
| 4320  | min Winter | 2.499   | 0.0     | 10736.0   | 3332      |
| 5760  | min Winter | 1.938   | 0.0     | 18066.8   | 4216      |
| 7200  | min Winter | 1.591   | 0.0     | 18368.7   | 5056      |
| 8640  | min Winter | 1.355   | 0.0     | 18515.8   | 5888      |
| 10080 | min Winter | 1.182   | 0.0     | 18477.3   | 6664      |

| RPS Group Plc                 | Page 3                 |           |
|-------------------------------|------------------------|-----------|
| Technology Services           |                        |           |
| Sherwood House, Sherwood Ave. |                        |           |
| Newark, Nottinghamshire, NG   |                        | Micro     |
| Date 24/10/2019 15:56         | Designed by louis.sime | Drainage  |
| File DETENTION BASIN 1.SRCX   | Checked by D. Watson   | Dialilage |
| Innovyze                      | Source Control 2019.1  |           |
|                               |                        |           |

## Rainfall Details

| Rainfall Model FEH                            |
|-----------------------------------------------|
| Return Period (years) 100                     |
| FEH Rainfall Version 1999                     |
| Site Location GB 566350 176250 TQ 66350 76250 |
| C (1km) -0.026                                |
| D1 (1km) 0.261                                |
| D2 (1km) 0.415                                |
| D3 (1km) 0.236                                |
| E (1km) 0.320                                 |
| F (1km) 2.576                                 |
| Summer Storms Yes                             |
| Winter Storms Yes                             |
|                                               |
| (                                             |
| Cv (Winter) 0.851                             |
| Shortest Storm (mins) 15                      |
| Longest Storm (mins) 10080                    |
| Climate Change % +40                          |

## Time Area Diagram

Total Area (ha) 12.180

|   | (mins)<br>To: |       |   |   |       |   |    |       |
|---|---------------|-------|---|---|-------|---|----|-------|
| 0 | 4             | 4.060 | 4 | 8 | 4.060 | 8 | 12 | 4.060 |

| RPS Group Plc                 |                        |           |  |  |  |
|-------------------------------|------------------------|-----------|--|--|--|
| Technology Services           |                        |           |  |  |  |
| Sherwood House, Sherwood Ave. |                        |           |  |  |  |
| Newark, Nottinghamshire, NG   |                        | Micro     |  |  |  |
| Date 24/10/2019 15:56         | Designed by louis.sime | Drainage  |  |  |  |
| File DETENTION BASIN 1.SRCX   | Checked by D. Watson   | Dialilage |  |  |  |
| Innovyze                      | Source Control 2019.1  |           |  |  |  |

#### Model Details

Storage is Online Cover Level (m) 1.750

#### Tank or Pond Structure

Invert Level (m) 0.750

## Depth (m) Area (m<sup>2</sup>) Depth (m) Area (m<sup>2</sup>)

0.000 17097.0 1.000 20740.0

#### Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0273-4170-1000-4170 Design Head (m) 1.000 Design Flow (1/s) 41.7 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Diameter (mm) 273 Invert Level (m) 0.750 Minimum Outlet Pipe Diameter (mm) 300 Suggested Manhole Diameter (mm) 1800

#### Control Points Head (m) Flow (1/s)

| Design Point  | (Calculated)  | 1.000 | 41.7 |
|---------------|---------------|-------|------|
|               | Flush-Flo™    | 0.421 | 41.7 |
|               | Kick-Flo®     | 0.770 | 36.8 |
| Mean Flow ove | er Head Range | _     | 33.9 |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) Flow | (l/s) | Depth (m) Flow | (1/s) | Depth (m) Flow | (l/s) | Depth (m) | Flow (1/s) |
|----------------|-------|----------------|-------|----------------|-------|-----------|------------|
|                |       |                |       |                |       |           |            |
| 0.100          | 8.6   | 1.200          | 45.5  | 3.000          | 70.9  | 7.000     | 107.1      |
| 0.200          | 28.1  | 1.400          | 49.0  | 3.500          | 76.4  | 7.500     | 110.7      |
| 0.300          | 40.8  | 1.600          | 52.3  | 4.000          | 81.5  | 8.000     | 114.3      |
| 0.400          | 41.7  | 1.800          | 55.3  | 4.500          | 86.3  | 8.500     | 117.7      |
| 0.500          | 41.4  | 2.000          | 58.2  | 5.000          | 90.9  | 9.000     | 121.1      |
| 0.600          | 40.5  | 2.200          | 61.0  | 5.500          | 95.2  | 9.500     | 124.3      |
| 0.800          | 37.5  | 2.400          | 63.6  | 6.000          | 99.3  |           |            |
| 1.000          | 41.7  | 2.600          | 66.1  | 6.500          | 103.3 |           |            |

©1982-2019 Innovyze

| RPS Group Plc                 |                        | Page 1     |
|-------------------------------|------------------------|------------|
| Technology Services           |                        |            |
| Sherwood House, Sherwood Ave. |                        |            |
| Newark, Nottinghamshire, NG   |                        | Micro      |
| Date 24/10/2019 15:59         | Designed by louis.sime | Drainage   |
| File DETENTION BASIN 2.SRCX   | Checked by D. Watson   | Diali lage |
| Innovyze                      | Source Control 2019.1  |            |

## Summary of Results for 100 year Return Period (+40%)

| Storm<br>Event |        | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Control<br>(1/s) | Max<br>Volume<br>(m³) | Status |     |
|----------------|--------|---------------------|---------------------|-------------------------|-----------------------|--------|-----|
| 15             | min    | Summer              | 1.166               | 0.416                   | 14.7                  | 1989.2 | ОК  |
| 30             | min    | Summer              | 1.205               | 0.455                   | 14.7                  | 2187.6 | O K |
| 60             | min    | Summer              | 1.246               | 0.496                   | 14.7                  | 2398.6 | ОК  |
| 120            | min    | Summer              | 1.287               | 0.537                   | 14.7                  | 2615.9 | ОК  |
| 180            | min    | Summer              | 1.310               | 0.560                   | 14.7                  | 2740.1 | ОК  |
| 240            | min    | Summer              | 1.326               | 0.576                   | 14.7                  | 2823.5 | ОК  |
| 360            | min    | Summer              | 1.346               | 0.596                   | 14.7                  | 2928.4 | ОК  |
| 480            | min    | Summer              | 1.357               | 0.607                   | 14.7                  | 2988.4 | O K |
| 600            | min    | Summer              | 1.363               | 0.613                   | 14.7                  | 3022.7 | ОК  |
| 720            | min    | Summer              | 1.366               | 0.616                   | 14.7                  | 3040.0 | ОК  |
| 960            | min    | Summer              | 1.396               | 0.646                   | 14.7                  | 3204.4 | O K |
| 1440           | min    | Summer              | 1.432               | 0.682                   | 14.7                  | 3402.0 | ОК  |
| 2160           | min    | Summer              | 1.455               | 0.705                   | 14.7                  | 3526.5 | ОК  |
| 2880           | min    | Summer              | 1.462               | 0.712                   | 14.7                  | 3567.8 | ОК  |
| 4320           | min    | Summer              | 1.398               | 0.648                   | 14.7                  | 3213.4 | ОК  |
| 5760           | min    | Summer              | 1.343               | 0.593                   | 14.7                  | 2914.9 | O K |
| 7200           | $\min$ | Summer              | 1.293               | 0.543                   | 14.7                  | 2648.7 | O K |
| 8640           | min    | Summer              | 1.247               | 0.497                   | 14.7                  | 2406.1 | O K |
| 10080          | min    | Summer              | 1.205               | 0.455                   | 14.7                  | 2186.2 | ОК  |
| 15             | $\min$ | Winter              | 1.231               | 0.481                   | 14.7                  | 2324.2 | O K |
| 30             | min    | Winter              | 1.276               | 0.526                   | 14.7                  | 2557.2 | ОК  |

|       | Stor<br>Even |        | Rain<br>(mm/hr) | Flooded<br>Volume<br>(m³) | Discharge<br>Volume<br>(m³) | Time-Peak<br>(mins) |
|-------|--------------|--------|-----------------|---------------------------|-----------------------------|---------------------|
| 15    | min          | Summer | 263.696         | 0.0                       | 1240.2                      | 27                  |
| 30    | min          | Summer | 145.425         | 0.0                       | 1245.6                      | 42                  |
| 60    | min          | Summer | 80.200          | 0.0                       | 2089.7                      | 72                  |
| 120   | min          | Summer | 44.229          | 0.0                       | 2250.9                      | 130                 |
| 180   | min          | Summer | 31.226          | 0.0                       | 2326.7                      | 190                 |
| 240   | min          | Summer | 24.392          | 0.0                       | 2363.3                      | 250                 |
| 360   | min          | Summer | 17.221          | 0.0                       | 2374.6                      | 368                 |
| 480   | $\min$       | Summer | 13.452          | 0.0                       | 2347.2                      | 488                 |
| 600   | min          | Summer | 11.106          | 0.0                       | 2313.8                      | 606                 |
| 720   | min          | Summer | 9.497           | 0.0                       | 2279.7                      | 726                 |
| 960   | min          | Summer | 7.754           | 0.0                       | 2197.9                      | 964                 |
| 1440  | min          | Summer | 5.827           | 0.0                       | 2038.9                      | 1442                |
| 2160  | $\min$       | Summer | 4.379           | 0.0                       | 4236.4                      | 2100                |
| 2880  | min          | Summer | 3.576           | 0.0                       | 4126.9                      | 2424                |
| 4320  | min          | Summer | 2.499           | 0.0                       | 3840.4                      | 3072                |
| 5760  | min          | Summer | 1.938           | 0.0                       | 5553.7                      | 3816                |
| 7200  | $\min$       | Summer | 1.591           | 0.0                       | 5685.7                      | 4616                |
| 8640  | min          | Summer | 1.355           | 0.0                       | 5786.0                      | 5368                |
| 10080 | $\min$       | Summer | 1.182           | 0.0                       | 5843.4                      | 6152                |
| 15    | $\min$       | Winter | 263.696         | 0.0                       | 1251.3                      | 27                  |
| 30    | min          | Winter | 145.425         | 0.0                       | 1241.4                      | 41                  |

©1982-2019 Innovyze

| RPS Group Plc                 |                        | Page 2     |
|-------------------------------|------------------------|------------|
| Technology Services           |                        |            |
| Sherwood House, Sherwood Ave. |                        |            |
| Newark, Nottinghamshire, NG   |                        | Micro      |
| Date 24/10/2019 15:59         | Designed by louis.sime | Drainage   |
| File DETENTION BASIN 2.SRCX   | Checked by D. Watson   | Diali laye |
| Innovyze                      | Source Control 2019.1  |            |

## Summary of Results for 100 year Return Period (+40%)

| Storm<br>Event |     |        | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Control<br>(1/s) | Max<br>Volume<br>(m³) | Status |
|----------------|-----|--------|---------------------|---------------------|-------------------------|-----------------------|--------|
| 60             | min | Winter | 1.323               | 0.573               | 14.7                    | 2805.7                | ОК     |
| 120            | min | Winter | 1.371               | 0.621               | 14.7                    | 3064.0                | ОК     |
| 180            | min | Winter | 1.398               | 0.648               | 14.7                    | 3214.4                | ОК     |
| 240            | min | Winter | 1.417               | 0.667               | 14.7                    | 3317.3                | ОК     |
| 360            | min | Winter | 1.441               | 0.691               | 14.7                    | 3451.6                | ОК     |
| 480            | min | Winter | 1.456               | 0.706               | 14.7                    | 3533.9                | ОК     |
| 600            | min | Winter | 1.466               | 0.716               | 14.7                    | 3586.0                | ОК     |
| 720            | min | Winter | 1.471               | 0.721               | 14.7                    | 3618.3                | ОК     |
| 960            | min | Winter | 1.509               | 0.759               | 14.7                    | 3831.3                | ОК     |
| 1440           | min | Winter | 1.555               | 0.805               | 14.7                    | 4091.0                | ОК     |
| 2160           | min | Winter | 1.586               | 0.836               | 14.7                    | 4268.8                | ОК     |
| 2880           | min | Winter | 1.594               | 0.844               | 14.7                    | 4318.2                | ОК     |
| 4320           | min | Winter | 1.521               | 0.771               | 14.7                    | 3897.6                | ОК     |
| 5760           | min | Winter | 1.450               | 0.700               | 14.7                    | 3499.5                | 0 K    |
| 7200           | min | Winter | 1.374               | 0.624               | 14.7                    | 3084.2                | ОК     |
| 8640           | min | Winter | 1.305               | 0.555               | 14.7                    | 2711.6                | ОК     |
| 10080          | min | Winter | 1.241               | 0.491               | 14.7                    | 2373.9                | ОК     |

| Storm |            | Rain    | Flooded | Discharge | Time-Peak |  |
|-------|------------|---------|---------|-----------|-----------|--|
| Event |            | (mm/hr) | Volume  | Volume    | (mins)    |  |
|       |            |         | (m³)    | (m³)      |           |  |
| 60    | min Winter | 80.200  | 0.0     | 2343.6    | 70        |  |
|       | min Winter | 44.229  | 0.0     | 2427.7    | 128       |  |
|       | min Winter |         | 0.0     | 2418.9    | 188       |  |
| 240   | min Winter | 24.392  | 0.0     | 2394.8    | 246       |  |
| 360   | min Winter | 17.221  | 0.0     | 2343.9    | 364       |  |
| 480   | min Winter | 13.452  | 0.0     | 2295.7    | 480       |  |
| 600   | min Winter | 11.106  | 0.0     | 2253.0    | 598       |  |
| 720   | min Winter | 9.497   | 0.0     | 2214.6    | 714       |  |
| 960   | min Winter | 7.754   | 0.0     | 2125.8    | 946       |  |
| 1440  | min Winter | 5.827   | 0.0     | 2008.6    | 1404      |  |
| 2160  | min Winter | 4.379   | 0.0     | 4334.4    | 2076      |  |
| 2880  | min Winter | 3.576   | 0.0     | 4171.8    | 2712      |  |
| 4320  | min Winter | 2.499   | 0.0     | 3832.0    | 3372      |  |
| 5760  | min Winter | 1.938   | 0.0     | 6468.1    | 4280      |  |
| 7200  | min Winter | 1.591   | 0.0     | 6620.9    | 5112      |  |
| 8640  | min Winter | 1.355   | 0.0     | 6732.3    | 5888      |  |
| 10080 | min Winter | 1.182   | 0.0     | 6801.1    | 6664      |  |

| RPS Group Plc                 |                        | Page 3    |
|-------------------------------|------------------------|-----------|
| Technology Services           |                        |           |
| Sherwood House, Sherwood Ave. |                        |           |
| Newark, Nottinghamshire, NG   |                        | Micro     |
| Date 24/10/2019 15:59         | Designed by louis.sime | Drainage  |
| File DETENTION BASIN 2.SRCX   | Checked by D. Watson   | Dialilage |
| Innovyze                      | Source Control 2019.1  |           |
|                               |                        |           |

## Rainfall Details

| Rainfall Model        |           | FEH                   |  |
|-----------------------|-----------|-----------------------|--|
| Return Period (years) |           | 100                   |  |
| FEH Rainfall Version  |           | 1999                  |  |
| Site Location         | GB 566350 | 176250 TO 66350 76250 |  |
| C (1km)               |           | -0.026                |  |
| D1 (1km)              |           | 0.261                 |  |
| D2 (1km)              |           | 0.415                 |  |
| D3 (1km)              |           | 0.236                 |  |
| E (1km)               |           | 0.320                 |  |
| F (1km)               |           | 2.576                 |  |
| Summer Storms         |           | Yes                   |  |
| Winter Storms         |           | Yes                   |  |
| Cv (Summer)           |           | 0.729                 |  |
| Cv (Winter)           |           | 0.851                 |  |
| Shortest Storm (mins) |           | 15                    |  |
| Longest Storm (mins)  |           | 10080                 |  |
|                       |           |                       |  |
| Climate Change %      |           | +40                   |  |

## Time Area Diagram

Total Area (ha) 4.170

|   | (mins)<br>To: |       |   |   |       |   |    |       |
|---|---------------|-------|---|---|-------|---|----|-------|
| 0 | 4             | 1.390 | 4 | 8 | 1.390 | 8 | 12 | 1.390 |

| RPS Group Plc                 |                        | Page 4    |
|-------------------------------|------------------------|-----------|
| Technology Services           |                        |           |
| Sherwood House, Sherwood Ave. |                        | 100       |
| Newark, Nottinghamshire, NG   |                        | Micro     |
| Date 24/10/2019 15:59         | Designed by louis.sime | Drainage  |
| File DETENTION BASIN 2.SRCX   | Checked by D. Watson   | Dialilage |
| Innovyze                      | Source Control 2019.1  |           |

#### Model Details

Storage is Online Cover Level (m) 1.750

#### Tank or Pond Structure

Invert Level (m) 0.750

# Depth (m) Area (m<sup>2</sup>) Depth (m) Area (m<sup>2</sup>) 0.000 4468.0 1.000 6050.0

#### Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0173-1470-1000-1470 Design Head (m) 1.000 Design Flow (1/s) 14.7 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 173 Invert Level (m) 0.750 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1200

# Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.000 14.7 Flush-Flo™ 0.322 14.7 Kick-Flo® 0.702 12.4 Mean Flow over Head Range 12.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) H    | Flow (1/s)   | Depth (m) Flow | (l/s)        | Depth (m) Flow | (1/s)        | Depth (m)      | Flow (1/s)   |
|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|
| 0.100          | 6.1          | 1.200          | 16.0         | 3.000          | 24.8         | 7.000          | 37.3         |
| 0.200<br>0.300 | 14.2<br>14.7 | 1.400<br>1.600 | 17.2<br>18.4 | 3.500<br>4.000 | 26.7<br>28.5 | 7.500<br>8.000 | 38.6<br>39.8 |
| 0.400<br>0.500 | 14.6<br>14.3 | 1.800<br>2.000 | 19.4<br>20.4 | 4.500<br>5.000 | 30.2<br>31.7 | 8.500<br>9.000 | 41.0<br>42.2 |
| 0.600          | 13.8<br>13.2 | 2.200          | 21.4         | 5.500          | 33.2         | 9.500          | 43.3         |
| 1.000          | 14.7         | 2.600          | 23.2         | 6.500          | 36.0         |                |              |

©1982-2019 Innovyze